

Geometry of Nozzle Assembly

University of Illinois at Urbana-Champaign

Temperature distribution with air gaps

- Air gap provides increased resistance to radial heat flow
- Nozzle air gap calculated using: gap = $\alpha_{steel} \Delta T \times R$ (mm) with α_{steel} = 12 x 10⁻⁶ /°C

Transient Analysis

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

BG Thomas 11

Material Properties used in the model for the Transient Analysis

•

S.N	Material	Properties	Temperature dependent data				Temperature-	
o			343°C	593°C	843°C	1232°C	independent data	
1	Dolomite (DO2)/ (DO8)	Specific Heat (J/Kg K) Same for DO2 & DO8	1007	1053	1083	1117	-	
		Density (kg/ m ³)	-	-	-	-	2940/2820	
		Conductivity (W/ m K)	5.3/3.2	4.3/3.2	3.9/3.0	3.0/2.6	-	
2	Steel	Specific Heat (J/Kg K)	-	-	-	-	690	
		Density (kg/ m ³)	-	-	-	-	8000	
		Conductivity (W/ m K)	-	-	-	-	29	
3	Brick	Specific Heat (J/Kg K)	-	-	-	-	1000	
		Density (kg/ m³)	-	-	-	-	1840	
		Conductivity (W/ m K)	-	-	-	-	2.6	
4	MgO	Specific Heat (J/Kg K)	1189	1240	1281	1327	-	
		Density (kg/ m ³)	-	-	-	-	2600	
		Conductivity (W/ m K)	5.5	4.4	3.5	2.8	-	
5	Air	Specific Heat (J/Kg K)	-	-	-	-	1000	
		Density (kg/ m ³)	-	-	-	-	1290	
		Conductivity (W/ m K)	-	-	-	-	0.01	

.

•

37 mm D 1042 mm B 48 m Temperature Yemperature +1.525e+03 +1.400e+03 +1.275e+03 +1.150e+03 +1.025e+03 +9.000e+02 +7.750e+02 +6.500e+02 +5.250e+02 +4.000e+02 +2.750e+02 +1.500e+02 +2.500e+01 T °C (DO8) Location T °C (DO2) 42 mm C Α 982 960 в 664 639 С 655 621 D 46 46 Е 1217 1182

University of Illinois at Urbana-Champaign Metals Processing Simulation Lab

Temperature Distribution at Steady State

•

•

13

BG Thomas

Conclusions

- Tundish steel bottom (point D) reaches a steady state temperature of 316 °C after 20 hours (for DO2) of operation.
- This clearly proves that, in reality, the process is always transient.
- Use of DO8 instead of DO2 increases the time required to reach steady state and further decreases the tundish wall temperatures.

Acknowledgements

- Continuous Casting Consortium Members (Nucor, Postech, LWB Refractories, Algoma, Corus, Labein, Mittal Riverdale, Baosteel, Steel Dynamics)
- Don Griffon and Rob Nunnington from LWB Refractories for the data.
- ABAQUS, Inc.
- Other Graduate students, especially J. Sengupta

University of Illinois at Urbana-Champaign	•	Metals Processing Simulation Lab	•	BG Thomas	25